Atmospheric Science Program:

DOE Research Aircraft Facility Gulfstream 159 Aircraft for Airborne Atmospheric Research

W.R. Barchet
Pacific Northwest National Laboratory
June 11, 2002

DOE Research Aircraft Facility

Grumman Gulfstream 159 (G-1) twin turboprop aircraft

DOE Research Aircraft Facility

- A DOE/OBER/ESD resource for atmospheric chemistry & aerosol research
- Instrument development, testing, and application; field study deployment
- Requests for access reviewed and recommended by Advisory Panel
- Priority given to DOE/OBER/ESD projects
- Contact W. R. Barchet for more information or application for flight hours:

e-mail: rich.barchet@pnl.gov

phone: 509-372-6158

fax: 509-372-6168

Attributes of the G-1 Aircraft

- Dimensions: Length 20 m, Wingspan 24 m, Height 21 m, Weight 16,330 kg max
- Nominal operation: Altitude 0.5-7.5 km, Speed 80-150 m/s, Sampling speed 100 m/s, Climb 160-330 m/min
- Endurance with maximum fuel: 6 hr
- Electrical Power: 4,000 VA @ 110&220 VAC, 28 VDC
- Crew: 2 pilots, 1-4 scientists
- Cabin payload: 1,300 kg

Research Electrical Power

- Independent generator on left engine
 - 300 A @ 28VDC
- Inverters transform 28 VDC to AC voltage
 - 4000 VA @ 110 VAC, 60 Hz, 1-_
 - 4000 VA @ 220 VAC, 60 Hz, 1-_
- Belly plugs provide 110 & 220 VAC shore power
- Distribution panel divides into circuits
 - circuit breaker protected
 - multi-voltage receptacle boxes
- Pilot can "kill" research power in an emergency
 - 2000 VA @ 110 VAC available from aircraft system
- Electrical power is the most limiting resource

Instrumentation on G-1

- PNNL and collaborative
 - ANL, BNL, Battelle Columbus
 - Other research organizations
- Meteorological sensors
 - Temperature, pressure, dew point temperature
 - Gust probe vector winds
- Chemical sensors
 - Real-time: O₃, CO, SO₂,
 NO/NO₂/NO_y, H₂O, H₂O₂;
 VOCs via PTR-MS; H₂SO₄,
 HNO₃, HONO via API-MS
 - Integrating: NO₂, PAN, HCHO,
 VOC

Instrumentation on G-1

(continued)

- Cloud & Aerosol Microphysics
 - PCASP, FSSP, 2D aerosol/cloud size spectra
 - Total scatter/back scatter nephelometers
 - Condensation particle counters
 - Ultrafine particle counter
 - Liquid water content probe
- Radiation
 - UV/solar/IR radiometers
 - Up/down-looking IR thermometers

Instrumentation on G-1 (continued)

- External instrumentation collaboration
 - BNL: NO_x/NO_y, H₂O₂, HCHO,
 Aerosol chemistry, Ultrafine sizing
 - BCO: API-MS, PAN-GC, VOC
 - ANL: VOC, VOC-GC, NO₂/PAN
 - U-WA: CFVI, CCN, B_{scat}
 - U-NV/DRI: CCN spectrometer
 - PNNL: PTR-MS, TRAC

BCO API 365 MS/MS

Instrumentation on G-1

(continued)

View forward

View aft

Inlets and Exhausts for Research Instruments

- Inlets need to be
 - chemically inert (Teflon, SS)
 - insensitive to angle of attack
 - isokinetic for particles
- Exhausts are needed to
 - remove excess heat
 - vent sensor trace gases
- Venturis needed to draw sample air through some instruments

NO/NO₂/NO_y

 O_3 , CO, SO_2

Scoop

Venturi

NO/NO₂/NO_y

 O_3 , CO, SO_2

Scoop

Instrumentation Racks

- Racks fastened to floor tracks
 - two on left
 - three on right
- Racks come in different sizes
 - Single-wide: 22"Wx19"Dx42"H
 - Double-wide: 42"Wx24"Dx42"H
- Racks protect
 - instruments from mechanical shock & accidental jolts
 - flight crew from injury
- Racks withstand high g-forces
 - turbulence
 - landings

Data Acquisition System

- Science & Engineering Associates M200
- 64 channels of analog (±5 VDC) input
 - space available for another 32 channels
- Special interface cards for
 - FSSP, PCASP aerosol probes
 - TANS/Vector attitude GPS
- Output to 8 mm tape or save on hard disk
- Flat panel display for real-time monitoring
 - Aircraft position superimposed on map
 - Strip-chart trace of selected parameters
 - Parameter versus Altitude for profiles

Cabin Configuration for FY02 Field Studies

2700 lb equipment 4 scientific crew 5000 VA @ 110 VAC 2900 VA @ 220 VAC

Locations of ACP Projects Using the DOE RAF G-1

